07.04.2022
Letzte Mathe-Stunde:
Positives Feedback bei
https://zumpad.zum.de/
20220407_toe_erinnerungen
04.04.2022
Link zum passwortgeschützten Verzeichnis:
http://www.plusplanet.de/htaccessdir2/
01.04.2022
Aufgaben für heute:
20220331_mini_LK_aufgaben.jpg
28.03.2022
Gandalf behauptet: In Fantasien sind nur 30% der Einhörner weiblich. (In Fantasien gibt es Milliarden von Einhörnern (d.h. bei einer Stichprobe ist die W'keit jeweils annähernd unabhängig)). Die Behauptung soll auf einem Signifikanzniveau von 10% beidseitig getestet werden. Es wird eine Stichprobe von 100 Einhörnern genommen. Es ergibt sich: von 100 gefangenen Einhörnern sind 37 weiblich. Ist Gandalfs Behauptung haltbar?
Lösung:
Nullhypothese: H0: p = 0,3
Alternativhypothese: H1: p ≠ 0,3
Wir testen mit: Signifikanzniveau 10% (dies ist die maximale Irrtumswahrscheinlichkeit). Da der Test beidseitig ist, soll der Ablehnungsbereich an beiden Seiten maximal 5% groß sein.
Größe der Stichprobe: n = 100
Bestimmung des Annahmebereichs: Eine Tabelle im GTR mit: BinCD(0,x,100,0.3) (Set: x von 0 bis 100) liefert:
P(X ≤ 22) ≈ 0,04
P(X ≤ 23) ≈ 0,07 <-- Sprung auf über 5%
P(X ≤ 37) ≈ 0,946
P(X ≤ 38) ≈ 0,966 <-- Sprung auf über 95%
Daraus ergibt sich:
Der linke Ablehnungsbereich ist das Intervall [0;22]
Der rechte Ablehnungsbereich ist das Intervall [39;100] --- (würde man [38;100] nehmen, so wäre die W'keit für dieses Intervall schon > 5%)
Der Annahmebereich ist folglich: [23;38]. Da die Anzahl weiblicher Tiere mit 37 Einhörnern bei der Stichprobe innerhalb des Annahmebereichs liegt, würden wir Gandalf glauben.
Fehler 1. Art: (Die Wahrscheinlichkeit für den Fehler 1. Art ist immer angebbar): Es ist möglich, dass bei der Stichprobe die Anzahl weiblicher E. im Ablehnungsbereich liegt, obwohl p=0,3 richtig ist. Diese W'keit beträgt:
P(X in Ablehnungsb.) = 1 - P(X im Annahmeb.)
= 1 - BinCD(23,38,100,0.3)
= 100% - 91.82% = 8,18%
Bei einer Stichprobe mit n=100 Tieren würden wir zu 8,18% zum Schluss kommen, dass Gandalf unrecht hat, obwohl seine Einschätzung stimmt.
Fehler 2. Art: (W'keit für den Fehler 2.Art ist nur angebbar, wenn wir die echte Wahrscheinlichkeit kennen) Angenommen, bei einer Einhornzählung kam heraus: 40% der Einhörner sind weiblich!
Die Wahrscheinlichkeit, dass bei einer Stichprobe der Annahmebereich [23;38] getroffen wird, obwohl p=0.4 ist, lautet:
P(Fehler 2.Art) = BinCD(23,38,100,0.4)
= 38,29%
-------------------------------------
Die Würfelfabrik Töns&Co verkauft Würfel an Casinos. Das Casino LeonPlay testet die Hypothese "1/6 der Würfelergebnisse liefern eine 6" mit n=200 Würfeln beidseitig auf einem Signifikanzniveau von 5%.
Töns&Co betrügt aber: In Wirklichkeit liegt die W'keit für einen 6erWurf bei p=0.2
• Berechne Annahme- und Ablehnungsbereich
• Berechne den Fehler 1. und 2. Art
Nullhypothese H0: p = 1/6
AlternativHyp. H1: p ≠ 1/6 (beidseitiger Test)
Tabelle im GTR liefert (n=200, p=1/6):
P(X ≤ 22) = BinCD(0;22;200;1/6) ≈ 0.016
P(X ≤ 23) = BinCD(0;23;200;1/6) ≈ 0.026
---> Sprung auf über 2,5% !!
P(X ≤ 43) = BinCD(0;43;200;1/6) ≈ 0.9699
P(X ≤ 44) = BinCD(0;44;200;1/6) ≈ 0.9801
---> Sprung auf über 97,5% !!
Linker Ablehnungsb.: [0;22]
Rechte Ablehnungsb.: [45;200]
Annahmebereich: [23;44]
(Irinins Alternativmethode für rechten Abl.B.):
P(X ≥ 44) = BinCD(44;200;200;1/6) ≈ 0.03
P(X ≥ 45) = BinCD(45;200;200;1/6) ≈ 0.0199
Also ab 45 beginnt der rechte Ablehnungsbereich.
Fehler 1. Art:
P(1.Art) = 1 - BinCD(23;44;200;1/6) ≈ 3,61%
Fehler 2. Art:
P(2.Art) = BinCD(23;44;200;0.2) ≈ 78%
Diese sehr große W'keit liegt daran, dass p=1/6 und p=0.2 sehr nah beieinander liegen.
Sie lässt sich vermindern, indem man n erhöht.
Sie lässt sich auch vermindern, indem man das Signifikanzniveau erhöht (und damit den Fehler 1. Art).
---------------------------------
Die GBG-Partei hat bei der letzten Wahl 20% der Stimmen gewonnen. Die Parteivorsitzende Braidi behauptet: Die Zustimmung in der Bevölkerung hat sich erhöht!
Stichprobe n=300; Signifikanzniveau 10%
Nullhypothese H0: p ≤ 0,2
AlternativHyp. H1: p > 0,2
Da der Ablehnungsbereich "rechts" ist, wird hier ein rechtsseitiger Test durchgeführt:
P(X≤68) = BinCD(0,68,300,0.2) ≈ 0,88
P(X≤69) = BinCD(0,69,300,0.2) ≈ 0,91 Sprung >90%
Annahmebereich: [0; 69]
Ablehnungsbereich: [70;300]
(Alternativ kann man im GTR "andersherum" rechnen:)
P(X≥69)=BinCD(69,300,300,0.2)≈0,12
P(X≥70)=BinCD(70,300,300,0.2)≈0,087 Sprung <10%
Fazit: Falls bei der Stichprobe die Anzahl der Zustimmungen im Intervall [70;300] liegt, würden wir Braidis Behauptung glauben.
Die SV-Partei sagt: Die Zustimmung zur GBG-Partei hat sich auf keinen Fall erhöht, sondern eher verringert! In welchem Fall würden wir der SV-Partei recht geben?
Linksseitiger Test! n=300, alpha=10%
Nullhypothese: H0: p ≥ 0.2
AlternativHpy: H1: p < 0.2
P(X≤50) = BinCD(0,50,300,0.2)≈ 0,083
P(X≤51) = BinCD(0,51,300,0.2)≈ 0,11 Sprung >10%
Annahmebereich für H0: [51;300]
Ablehnungsbereich : [0;50]
Falls in der Stichprobe nur [0;50] Zustimmungen auftauchen, glauben wir der SV.
--------------------------
Hypothesentest bei der Normalverteilung:
1958 war die Körpergröße in cm von jungen Männern normalverteilt mit dem Erwartungswert μ=173,3 und Standardabweichung σ=6,5.
D.h. innerhalb des 2σ-Intervalls [160.3 ; 186.3] liegen ca. 95,4% der Stichprobenergebnisse.
Gilt μ=173,3 und σ=6,5 auch heute noch?
Eine Stichprobe mit n=9 Leuten ergibt:
A ist 1.86 groß
B ist 1.85 groß
C ist 1.84 groß
D ist 1.86 groß Mittelwert der Stichprobe:
E ist 1.85 groß xquer = 1.85
F ist 1.84 groß (Liegt zwar innerhalb des
G ist 1.86 groß 2σ-Intervalls der alten
H ist 1.85 groß Normalverteilung, ist aber
I ist 1.84 groß dennoch verdächtig weit weg!)
Um auf einem (100%-95,4%) = 4,6% Signifikanzniveau zu testen, genügt es nicht, dass xquer = 1.85 innerhalb des alten 2σ-Intervalls liegt. Stattdessen muss es in folgendem Intervall liegen:
[μ- (2σ/Wurzel(n)) ; μ+ (2σ/Wurzel(n))]
Das bedeutet hier:
μ=173.3 2σ=13 Wurzel(n)=3
[168.97 ; 177.63]
Also Fazit: Die "alten" Parameter von 1958 sind mit der Stichprobe von heute nicht mehr haltbar, da xquer=185 nicht innerhalb des Testintervalls [168.97 ; 177.63] liegt.
23.03.2022
Aufgaben zur Mathe-Vertiefung
Die ausgeteilten Aufgaben vom Blatt findet ihr hier nochmal inklusive Lösung:
20220323_Mix_Hyptest_in_Abiklausuren.pdf
Alternativ zu einer Mail könnt ihr Eure selbst erfundenen Aufgaben auch in folgendem Dokument speichern:
https://zumpad.zum.de/
20220324_toe_hyptests
21.03.2022
Wdh: Hypothesentest
--------------------
Gandalf behauptet: In Fantasien sind nur 30% der Einhörner weiblich. (In Fantasien gibt es Milliarden von Einhörnern (d.h. bei einer Stichprobe ist die W'keit jeweils annähernd unabhängig))
Test dieser Hypothese: H0: p = 0,3
Alternativhypothese: H1: p ungleich 0,3
Wir testen mit:
Signifikanzniveau 10% (maximale Irrtumsw'keit)
Größe der Stichprobe: n = 100
Es ergibt sich: von 100 gefangenen Einhörnern sind 37 weiblich. Ist H0 haltbar?
Bestimmung des Annahmebereichs: Tabelle
mit: BinCD(0,x,100,0.3) (Set: x von 0 bis 100)
P(X ≤ 22) ≈ 0,04
P(X ≤ 23) ≈ 0,07 <-- Sprung auf über 5% Falscher Wert am Beamer?
P(X ≤ 37) ≈ 0,946
P(X ≤ 38) ≈ 0,966 <-- Sprung auf über 95%
Wenn H0 gilt, dann ist die W'keit > 5% für bis zu 23 weibliche Einhörner. Der linke Ablehnungsbereich darf also nur bis 22 gehen!
Bestimme
P(22 ≤ X ≤37) ≈
P(23 ≤ X ≤37) ≈
P(22 ≤ X ≤38) ≈
P(23 ≤ X ≤38) ≈
P(X ≤ 22) ≈ 0,04 (siehe Tabelle)
P(X ≤ 23) ≈ 0,07 (siehe Tabelle)
P(X ≥ 37) ≈
P(X ≥ 38) ≈
https://zumpad.zum.de/
20220323_toe_stocha_fenster
16.03.2022
Ein Vokabelheft der Mathematik:
20220315_MatheVokabeln.pdf
Aufgabe:
Lies die Erklärungen "aktiv" (mit Stift und Papier!) durch. Das heißt:
• Unklarheiten oder Rechtschreibfehler bitte direkt melden.
• Auftauchende Gleichungen oder Behauptungen selbst auf einem Blatt Papier überprüfen. Für echte mathematische Fehler gibt's einen Euro
• Ergänze die Liste am Ende durch eigene Begriffe, die Du schon immer erklärt haben wolltest
• Schreibe einen eigenen Artikel
01.03.2022
Übungen zum GTR:
20220301_Taschenrechnerfibel_2022.pdf
25.02.2022
Themen Vorabiklausur:
Analysis komplett (vgl. z.B. die Themenzusammenstellung aus dem Kernlehrplan)
Vektorgeometrie (vgl. z.B. die Themenzusammenstellung aus dem Kernlehrplan)
Stochastik: kommt nur im hilfsmittelfreien Teil vor. Nur folgende Unterthemen:
• Mittelwert und (empirische) Standardabweichung bei Messwerten
• Erwartungswert und Standardabweichung von Zufallsgrößen
• Binomialverteilung incl. Verständnis und Anwendung der Formel der Binomialverteilung, Interpretation des Einflusses von n und p auf die Verteilung und ihre graphische Darstellung.
Link aufs passwortgeschützte Verzeichnis:
http://www.plusplanet.de/htaccessdir2/
17.02.2022
Siehe Datei 20220217_Abi2020_LK_HT_B1.pdf im passwortgeschützten Verzeichnis:
http://www.plusplanet.de/htaccessdir2/
www.plusplanet.de/video/20220217_vm_low.mp3
Infos zur Abiturprüfung:
https://www.standardsicherung.schulministerium.nrw.de/cms/zentralabitur-gost/faecher/fach.php?fach=2
Siehe dort:
• den PDF-Link "Vorgaben Abitur 2022 - Mathematik NEU"
• den PDF-Link "Organisatorische Vorgaben für die Prüfungsjahre 2021 2022"
Siehe Datei 20220217_Abiturvoraussetzungen_Auszug_KLP_Kompetenzerwartungen.pdf im passwortgeschützten Verzeichnis:
http://www.plusplanet.de/htaccessdir2/
16.02.2022
Materialien für heute:
20220215_b_potenzregeln_ueb1_luecke.jpg
20220215_c_funktionsbaukasten_luecke.jpg
20220215_exp_gleichungen_ueb1_luecke.jpg
20220215_exp_gleichungen_ueb2_luecke.jpg
Lösungen:
20220215_b_potenzregeln_ueb1.jpg
20220215_c_funktionsbaukasten.jpg
20220215_d_funktionsbaukasten_fernverhalten.jpg
Fernverhalten übersichtlicher:
20220217_Funktionsbaukasten_c.jpg
20220215_exp_gleichungen_ueb1.jpg
20220215_exp_gleichungen_ueb2.jpg
Exponentialfunktionen: Steckbriefaufgaben
20220217_steckbrief_exp_luecke_1c.jpg
20220217_steckbrief_exp_1c.jpg
12.02.2022
Musterlösung zur Hausaufgabe:
20220212_Ortskurve_Parabel.jpg
Beispiel für eine Ortskurve mit Fallunterscheidung:
20220213_Ortskurve_Fallunterscheidung.jpg
Aufgabe mit einer kubischen Funktion:
Aufgabe:
20220212_Ortskurve_kubisch_aufgabe.jpg
Lösung mit Lücke:
20220212_Ortskurve_kubisch_luecke.jpg
Lösung komplett:
20220212_Ortskurve_kubisch.jpg
10.02.2022
Feedbackformular
Abi_2020_LK_HFT.pdf
01.02.2022
Aufgaben:
20220201_dina4_aufgabe.jpg
Lückenlösung:
20220201_dina4_loesung_luecke.jpg
Komplettlösung
20220201_dina4_loesung.jpg
Aufgaben:
20220201_kreisdreieck_aufgabe.jpg
Lückenlösung:
20220201_kreisdreieck_loesung_luecke.jpg
Komplettlösung
20220201_kreisdreieck_loesung.jpg
31.01.2022
Übungen:
Lösung als "Lückentext":
20220125_tang_loesung_Luecke.jpg
Lösung komplett:
20220125_tang_loesung.jpg
Lösung als "Lückentext":
20220125_tang2_loesung_Luecke.jpg
Lösung komplett:
20220125_tang2_loesung.jpg
Lösung als "Lückentext":
20220129_extremwertaufg_skizze_Luecke.jpg
Lösung komplett:
20220129_extremwertaufg_skizze.jpg
Lösung als "Lückentext":
20220129_extremwertaufg_skizze2_Luecke.jpg
Lösung komplett:
20220129_extremwertaufg_skizze2.jpg
21.01.2022
Lösung zum Problem "Fläche zwischen Parabel und Geradenschar soll gleich 10 sein":
20220120_loesung.jpg
Bitte Lösung verstehen und ins Heft übertragen.
Zusammenfassung "Gleichungen":
20180131_Gleichungstypen_EF.jpg
Für Interessierte: Link zum Skript "komplexe Analysis"
https://www.finanz.math.tugraz.at/~lichtenegger/kompan.pdf
Aufgabe: "Fläche zwischen Kreisen"
20220203_kreisdreieck_innere_flaeche.jpg
03.12.2021
Datei "" in der Kategorie "" nicht vorhanden
24.11.2021
https://bildblog.de/2087/als-krebs-hat-bild-naturlich-darmprobleme/
https://www.rwi-essen.de/unstatistik/
12.11.2021
Fahrplan:
• Hausaufgabencheck:
http://www.plusplanet.de/miscrawhtml/00000000_Buch_S292_Nr1_5_6_9_tn.png
•
http://www.plusplanet.de/miscrawhtml/20210224_Anwendung_Binomialverteilung.jpg
•
http://www.plusplanet.de/miscrawhtml/20210228_Anwendung_Binomialverteilung_abwandlung1_low.jpg
•
http://www.plusplanet.de/miscrawhtml/20210228_Anwendung_Binomialverteilung_abwandlung2_low.jpg
10.11.2021
Fahrplan:
• Coronatestung
• Rechnung der "Umkehraufgaben" mit Hilfe unseres GTR: Tabellieren und s in einer stetigen Funktion suchen.
• S291 durch Tabellierung nachvollziehen, Erklärung der Logarithmusrechnung unten.
• Schätzen von Wahrscheinlichkeiten: S289 Nr3
• S291ff: Nr1, Nr6, Nr9
09.11.2021
Hausaufgabe zu Mittwoch:
Lesen und verstehen:
20181204_Praxis_der_binvert.jpg
Lesen und verstehen: S291
Erklärung Mittelwert, Erwartungswert und Standardabweichung:
20180209_gegenueberstellung_beschr_Statistik_Wkeitstheorie.jpg
• Klärung von Unklarheiten S287 und S288
• HA-Check
• S289 Nr4,6
• S291 erst selbst lesen und verstehen (Bsp2 mit GTR!), dann Fragen stellen
•
20181204_Praxis_der_binvert.jpg
• S291ff: Nr1, Nr6, Nr9
Klausurthemen in der Stochastik:
• Komplettes kopiertes Skript
• Unterschied: Erwartungswert Mittelwert - theoretische und statistische Standardabweichung (Auswendig muss man die Formel für Erwartungswert (allgemein und für Binomialverteilung) können und natürlich auch für den Mittelwert)
• Binomialverteilung: Herleitung der Bernoulli-Formel mit Hilfe eines Baumes und dem Binomialkoeffizienten. (Formel auswendig kennen und erklären können!)
• Binomialverteilung: In Sachaufgaben anwenden können. Benutzung der GTR-Befehle BinomialPD und BinomialCD
• Binomialverteilung "Umkehraufgaben": P finden, n finden, k finden, p finden (dabei den GTR nutzen!)
Übungstipps:
Im Lösungsarchiv ALLE AUFGABEN (mit einer Ausnahme: 2.4.1 "Hypothesentest") insbesondere natürlich die "roten" Stochastikaufgaben.
Im Buch: Kapiteltexte und Aufgaben von S272 bis S294
05.11.2021
• Ha-Check
• Buch S283 oben: Kasten
• GTR-Funktion: BinomialPD(k,n,p)
• Gemeinsam: Aufgabe 4, Einführung Befehl BinomialCD(k,n,p) bzw. BinomialCD(k1,k2,n,p). (Vgl. Buch S.510)
• Kurze Notiz zu Erwartungswert und Standardabweichung (S287 mitte)
• Ha: Lies Buch S287f, Bearbeite 289 Nr1 und 2.
Klausurthemen in der Stochastik:
• Komplettes kopiertes Skript
• Unterschied: Erwartungswert Mittelwert - theoretische und statistische Standardabweichung
• Binomialverteilung incl. Umkehraufgaben
02.11.2021
Aufwärm-Aufgaben zur Kombinatorik
• Aus dem Alphabet (26 Buchstaben) wird ein Zufallspasswort mit 4 Buchstaben generiert (z.B. "ZBCZ"). Wieviele mögliche solcher Passwörter gibt es?
• Aus einem Hefter mit 20 durchnumerierten Blättern werden 4 Blätter herausgerissen und nacheinander auf einen Stapel gelegt. Wieviele mögliche Stapel gibt es (Hinweis: der Stapel "Seite1,Seite2,Seite3,Seite4" ist ein anderer als "Seite4,Seite3,Seite2,Seite1")?
• Am Morgen vor einer Klausur teilt das Sekretariat dem Lehrer mit, dass sich 4 der 20 SchülerInnen krank gemeldet haben. Wievele mögliche "kranke Gruppen" gibt es?
27.10.2021
Links zu (halb-)interaktiven Wahrscheinlichkeitsaufgaben:
http://www.plusplanet.de/miscrawhtml/stocha_ein_und_zweistufige_ze.md.html
http://www.plusplanet.de/miscrawhtml/stocha_bedingtew.md.html
http://www.plusplanet.de/miscrawhtml/stocha_mengen_tupel_bedingtew.md.html
http://www.plusplanet.de/miscrawhtml/stocha_muenzwurf.md.html
http://www.plusplanet.de/miscrawhtml/20190927_mef_wkeit_uebungen4.md.html
http://www.plusplanet.de/index.php?cat=Mathematik_EF_Abi2022&file=20191121_aidstest_varianten.pdf
Ein Corona-Schnelltest hat folgende Eigenschaften:
• Wenn die Person Covid hat, dann ist der Test
zu 99% positiv (und 1% negativ)
• Wenn die Person nicht Covid hat, dann ist der
Test zu 2% positiv (und 98% negativ)
Von 82 Mio. Deutschen sind ca 82000 krank.
Bestimme die W'keit, dass jemand gesund ist,
obwohl der Test positiv ist!
_
Festlegung: C = Coronakrank, C = gesund
T+ = Test positiv, T- = Test negativ
Aus dem Aufgabentext entnimmt man:
82000 1 _ 999
P(C) = -------- = ------ P(C) = 1-P(C)=----
82Mio 1000 1000
Aus dem Aufgabentext entnimmt man:
P (T+) = 99% =0,99 P (T-) = 1% = 0,01
C C
P_(T-) = 98% =0,98 P_(T+) = 2% = 0,02
C C
Erinnerung: P(A ∩ B) Aus der
P (B) = -------- Formelsammlung
A P(A)
Hier:
P(C ∩ T+)
P (T+) = ----------- <=> P(C ∩ T+)= 0,99/1000
C P(C)
= 99/100000
_
P(C ∩ T-) _
P_(T-) = ----_------ <=> P(C ∩ T-)=0,97902
C P(C)
_
| C C |
--+-----------------------------------
| 99 _ | P(T+)=
T+|P(C∩T+)=------ P(C∩T+)=0,01998 | 0,02097
| 100000 |
| |
| 1 _ | P(T-)=
T-|P(C∩T-)=------- P(C∩T-)=0,97902 | 0,97903
| 100000 |
--------------------------------------
| 1 _ 999 |
| P(C)=------ P(C) = ------ |
| 1000 1000 |
Die eigentliche Aufgabe war ja aber folgende:
Wie groß ist die Wahrscheinlichkeit, dass nach
positivem Testausgang die Person tatsächlich
krank ist?
_
_ P(C∩T+) 0,01998
P (C) = -------- = -------- = 0,952.. =ca.95%
T+ P(T+) 0,02097
P (C) = 1 - 0,952.. = ca. 4,8%
T+
17.09.2021
In der Klausur wird es auch einen hilfsmittelfreier Teil geben.
Mit an Sicherheit grenzender Wahrscheinlichkeit gestellte Aufgaben:
• Löse folgendes LGS
• Erstelle aus drei gegebenen Punkten ein Ebenengleichung in Parameterform, wandle dann um in Normalen- bzw. Koordinatenform (und/oder auch umgekehrt)
• Aufgaben zu einer geometrische Situation. Z.B.
• - Gegeben ist eine Pyramide mit den Eckpunkten bla bla
• - Von der Pyramide wird die Spitze abgeschnitten, die Schnittkante wird durch die Ebene E ... festgelegt.
• - Berechne die Schnittpunkte auf den Pyramidenkanten
• - Berechne den Abstand der Pyramidenspitze von der Schnittebene
• - Weise nach: Die Schnittfläche ist ein Trapez / Drachenviereck / Dreieck / Quadrat etc.
• - Berechne die Größe der Schnittfläche
• - Berechne das Volumen der abgeschnittenen Pyramidenspitze
15.09.2021
Übungsaufgaben im Buch:
S195ff Nr2, Nr5 abc, Nr7, Nr9, Nr10,
S200ff Nr5, Nr9
S225ff Nr1, Nr4
S230ff Nr4, Nr5, Nr7, Nr8, Nr11
Ergänzung:
S261 Nr1 Nr2ab
S266ff Nr1 Nr3 Nr8 Nr14
Lösungstipps:
195 Nr2:
Beispiel:
a) MittelpunktBC berechnen (z.B. durch Mittelwerte der Koord.)
Verbindungsvektor von A zu MittelpunktBC
Von diesem Verbindungsvektor* die Länge berechnen
(Andere Seitenhalbierende analog)
b) Bilde Geraden zu den Seitenhalbierenden (mit dem
entsprechenden Verbindungsvektor* als Richtungsvektor) und
bestimme den Schnittpunkt. Dann wieder Abstand des Schnitt-
punktes von den Dreiecks-Ecken berechnen.
Oder Abkürzung: Die Seitenhalbierenden schneiden sich im
Verhältnis 2:1, d.h. man rechnet das Ergebnis von a) mal 2/3
195 Nr 5
a) für r Zahlen einsetzen und ausrechen. (Ein einfacher Punkt ist immer der Aufpunkt (Stützvektor) der Geraden)
b) Bilde eine Gleichung nur mit den x3-Komponenten der Vektoren, und hier muss 0 herauskommen:
Ansatz 0 = 4 + r
Dann die Lösung in g einsetzen.
c) Dann muss x2-Komponente gleich null sein. (Dann weiter wie in Aufgabenteil a) )
195 Nr7
a) Geraden aufstellen (Nutze A als Stützvektor und Verbindungsvektor AB als Richtungsvektor)
Dann: Rezept Schnittpunktbestimmung: Gleichsetzen, LGS lösen
b) Punkte bestimmen, ansonsten Rezept wie in Teil a)
195 Nr9
Beträge/Längen der Verbindungsvektoren bestimmen, Rechtwinkligkeit prüfen, indem man nur bei zwei VerbVek das Skalarprodukt = 0 überprüft und prüft, ob gegenüberliegende Verbindungsvektoren identisch (bzw. Gegenvektoren) sind.
196 Nr10
a) Aufpunkt der gegebenen Gerade verwenden und einen neuen Richtungsvektor suchen, der die Gleichung
x1·1 + x2·9 + x3·4 = 0
(Skalarprodukt mit gegebenem RichtVek muss = 0 sein)
erfüllt. Probieren liefert z.B. die Lösung (-4|0|1)
S200 Nr5
Standardrezept Gerade aus zwei Punkten aufstellen (A als Aufpunkt nutzen, AB-Verbindungsvektor als Richtungsvektor benutzen) dann eine Punktprobe mit Punkt P durchführen, um zu entscheiden, ob P auf der Geraden liegt.
S200 Nr9
Wiederhole nocheinmal den Entscheidungsbaum von S185. DAmit solltest Du dann recht fix sehen können, dass bei Aufgabenteil b und d die Richtungsvektoren Vielfache voneinander sind und dort also (anders als bei a und b) kein komplettes LGS mehr gelöst werden muss.
S225 Nr1
Gegebenenfalls hier nochmal den Online-Löser bemühen, um damit zu trainieren:
http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi?c=sys
S225 Nr4
Macht Euch auf jeden Fall die Skizze! Die Schattenpunkte ermittelt man, indem man eine Gerade mit Aufpunkt P und Richtungsvektor PA (bzw PB für die zweite Gerade) aufstellt und dann deren Schnittpunkt mit der Ebene ermittelt. Zum Schluss ermittelt man noch den Abstand der beiden Schnittpunkte.
230 Nr4
3 Punkte können auf einer Geraden liegen: Dann ist eine Ebene nicht eindeutig festgelegt.
Angenommen, es existiert eine Ebene. Liegt D auf der Ebene? Punktprobe mit D liefert ein LGS. Falls es eine Lösung hat, liegt D auf der Ebene.
S230 Nr5
Hier ist eigentlich nicht 100%ig klar (aber sicher so gemeint), dass...
• bei Fig3 die Ebene die x3 Achse nicht schneidet
• bei Fig4 die Ebene die x1 und die x3 Achse nicht schneidet
• bei Fig3 die Ebene die x2 Achse nicht schneidet
S230 Nr 7
a) klar
b) Benutze einfach beide Richtungsvektoren als Spannvektoren. Aufpunkt von g1 oder g2 ist egal: es liegt ja sowieso alles in der gleichen Ebene
c) Für den Schnittpunkt mit der x1-Achse eine Punktprobe mit dem Punkt (s|0|0) durchführen und dann s ermitteln. Für die anderen Achsen analog.
S230 Nr8
Am schnellsten lösbar duch Gleichsetzen und Lösung des LGS.
S231 Nr11
In der Musterlösung ists eigentlich schon gut erklärt. Mit "Basis" ist die Grundfläche der Pyramide gemeint.
S261 Nr1
s. Lösung im Buch
S261 Nr2ab
Normale Abstandsberechnungen
S266 Nr1
s. Lösung im Buch
S266 Nr3
s. Lösung im Buch
S266 Nr8
s. Lösung im Buch
S267 Nr14
s. Lösung im Buch
14.09.2021
Link zur Komplettlösung der von mir an der Tafel gelösten Aufgabe "Ebene schneidet Ecke vom Würfel ab".
20210914_abstand_komplett_tn.jpg
14.09.2021
Abstandsaufgaben:
Gegeben:
Punkt H(3|5|7)
E1: -8x₁ + 8x₂ + 10x₃ = -28
E2: -4x₁ + 4x₂ + 5x₃ = 43
→ ⎛10⎞ ⎛ 6⎞
g1: x = ⎜-1⎟ + r· ⎜-4⎟
⎝ 6⎠ ⎝ 8⎠
→ ⎛ 9⎞ ⎛ 3⎞
g2: x = ⎜ 1⎟ + s· ⎜-2⎟
⎝15⎠ ⎝ 4⎠
→ ⎛ 4⎞ ⎛ 1⎞
g3: x = ⎜ 1⎟ + t· ⎜-4⎟
⎝11⎠ ⎝ 4⎠
Bestimme:
a) Abstand Punkt H zu E1
b) Abstand E1 zu E2
c) Abstand g2 von E1
d) Abstand g1 von g2
e) Abstand g1 von g3
f) Abstand Punkt H von g1
Jede Teilaufgabe hat die Lösung √57
----------------------------------------
Gegeben:
Punkt H(2|7|3)
E1: x₁ + 2x₂ + 2x₃ = 31
E2: 2x₁ + 4x₂ + 4x₃ = 44
→ ⎛-1⎞ ⎛-4⎞
g1: x = ⎜10⎟ + r· ⎜ 1⎟
⎝ 6⎠ ⎝ 1⎠
→ ⎛-2⎞ ⎛-8⎞
g2: x = ⎜ 8⎟ + s· ⎜ 2⎟
⎝ 4⎠ ⎝ 2⎠
→ ⎛ 8⎞ ⎛ 6⎞
g3: x = ⎜ 6⎟ + t· ⎜-1⎟
⎝ 1⎠ ⎝-2⎠
Bestimme:
a) Abstand Punkt H zu E1
b) Abstand E1 zu E2
c) Abstand g2 von E1
d) Abstand g1 von g2
e) Abstand g1 von g3
f) Abstand Punkt H von g1
Jede Teilaufgabe hat die Lösung 3
13.09.2021
Klausurthema 1: Vektoren:
• Punkte im 3D-Koordinatensystem, "Zurechtfinden" im 3D-Koordinatensystem, 3D-Koordinatensystem zeichnen und auch Punkte daraus ablesen können (wenn Zusatzinformationen gegeben sind! Im Allgemeinen ist es ja nicht möglich, einen Punkt eindeutig aus einem 3D-Koordinatensystem abzulesen)
• Begriffe Ortsvektor, Verbindungsvektor etc. (Alle Begriffe vom Grundlagenzettel). Geometrische Bedeutung von Vektoraddition und Multiplikation eines Vektors mit einer Zahl.
• Länge von Vektoren bzw. Strecken bzw. Abstand zweier Punkte
• Geradengleichungen in Parameterform: Punktproben durchführen können, Lagebeziehung zweier Geraden feststellen können (windschief, parallel, identisch, Schnitt?) mit Hilfe des "Entscheidungsbaumes" aus dem Buch und durch Lösen von linearen Gleichungssystemen.
• Ebenen in Parameterform: Punktproben durchführen können, Lagebeziehung zweier Ebenen oder Ebene-Gerade feststellen können (parallel, identisch bzw. g liegt in E, Schnitt?) mit Hilfe des "Entscheidungsbaumes" aus dem Buch und durch Lösen von linearen Gleichungssystemen (mit dem GTR!).
• Bei Beschränkung der Parameterbereiche bei Geraden können sich z.B. Strahlen oder Strecken ergeben. Bei Ebenen sind es gewisse Teilflächen (z.B. Parallelogramme)
• Skalarprodukt: Berechnung und Anwendung: zwei Vektoren stehen genau dann senkrecht zueinander, wenn deren Skalarprodukt Null ergibt. Damit kann man z.B. auch nachweisen, dass sich zwei Geraden senkrecht schneiden. Dies ist dann der Fall, wenn sie sich schneiden und zusätzlich das Skalarprodukt der Richtungsvektoren Null ergibt.
• Winkel zwischen Vektoren
• Vektoren in geometrischen (Sach)zusammenhängen: Beispielsweise könnte auch nach den "Seitenhalbierenden" eines Dreiecks gefragt werden. Dann muss man natürlich wissen, was eine Seitenhalbierende ist. Ebenso können Quader, Prismen, Pyramiden etc. vorkommen (nur in relativ übersichtlichen Zusammenhängen). Wenn man z.B. nicht weiß, dass das Volumen einer Pyramide mit der Formel V= 1/3 · G · h berechnet werden kann, sollte das zumindest in der Formelsammlung nachschlagen können.
• Abstände (siehe Übersichtszettel vom 10.09.2021). Das Vorgehen bei allen Situationen muss bekannt sein.
Ausnahme: Abstand windschiefer Geraden kommt in der Klausur nicht dran. (Abstand paralleler Geraden aber schon!)
• Schnittwinkel
• Entstehende LGS können im Teil mit Hilfsmitteln mit GTR gelöst werden. Wer "von Hand" rechnen möchte, kann das natürlich dennoch machen. Aber: Man sollte wissen, was man tut!
• Lineare Gleichungssysteme müssen im hilfsmittelfreien Teil auch per Hand gelöst werden können. Auch solche, die unendlich viele (Parameter wählen!) oder gar keine Lösungen haben.
• Aufgaben mit sich bewegenden Objekten (z.B. Flugbahn eines Flugzeugs)
Übungen: Gesamtes Kapitel aus dem Lösungsarchiv
(Übungstipps aus dem Buch folgen)
Klausurthema 2: Die beiden Abitur-Altklausuren, die wir in Mathe VTF bearbeitet haben. Es werden praktisch identische Aufgaben mit anderen Zahlen vorkommen.
31.08.2021
Mathe-Vertiefung: Nutzung des Computers (i.d.R. PC, Handy klappt nicht immer) zum Üben und zum Lösen von Aufgaben:
1. Identifiziere die korrekte Ableitung ("Derivative" heißt Ableitung):
http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_matching.html
2. Zeichne mindestens drei Ableitungen mit folgender Ableitungs-App:
http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_try_to_graph.html Versuche dabei jeweil auf über 80% accuracy zu kommen - sonst hast Du's wohl noch nicht richtig verstanden!
3. Identifiziere die korrekten Ableitungen:
http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_first_second.html
4. Identifiziere die korrekte Stammfunktion ("antiderivative" heißt Stammfunktion):
http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_matching_antiderivative.html
5. Zeichne die Ursprungsfunktion für eine gegebene Ableitung:
http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_app_1_graph_AD.html Dabei sind die großen grünen Punkte auf jeden Fall gesetzt und Teil der Ursprungsfunktion.
6. Zeichne aus der zweiten Ableitung die Ursprungsfunktion:
http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_app_2_graph_ADAD.html Dabei sind die großen grünen Punkte auf jeden Fall gesetzt und Teil der Ursprungsfunktion.
7. (Eher ein Forschungsauftrag anstatt einer konkreten Aufgabe) Überlege Dir, wo die Wendepunkte der Funktion sind und bestätige deine Vermutung, indem du die "concave up" und "concave down" Checkboxes anklickst.
http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_shape_of_a_graph.html
8. (Eher ein Forschungsauftrag anstatt einer konkreten Aufgabe) Überlege Dir, wie Du die Integralgrenzen schieben musst, um einen Wert von Null herauszubekommen.
http://webspace.ship.edu/msrenault/GeoGebraCalculus/integration_intro_geometric.html
Mit Hilfe der der Seite
https://www.wolframalpha.com sollen die Abituraufgaben von 2015 HT1 gelöst werden:
9. Aufgabe a1:
500 e ^ (0.6 t) where t = 3
10. Aufgabe a2:
solve 500*e ^ (0.6t) = 2000 for t
11. Aufgabe a3:
(integrate f(t) = 500 e ^ (0.6 t) from 0 to 0.5) * 2 oder auch alternativ:
mean value of f(t) = 500 e ^ (0.6 t) from 0 to 0.5 oder auch als Zwischenergebnis:
antiderivative of f(t) = 500 e ^ (0.6 t)
12. Aufgabe a5 (teilweise):
simplify (500 e ^ (0.6 a) + 500 e ^ (0.6 (a+0.5)))/2
13. Aufgabe b2:
maximum of 300* e ^ (0.6 t) in [0,3] Dabei bitte auch "approximate" klicken, um das "Zahlenergebnis" herauszubekommen
Die Matheseiten von Arndt Brünner
https://www.arndt-bruenner.de/mathe/mathekurse.htm sind ein Fundus sehr guter Übungen. Konkret empfehle ich folgendes:
Gegeben: zwei Ebenen. Bestimme die Schnittgerade
→ ⎛10⎞ ⎛0⎞ ⎛0⎞ → ⎛2⎞ ⎛3⎞ ⎛5⎞
x= ⎜2 ⎟ + r⎜1⎟ + s⎜3⎟ x= ⎜4⎟ + p⎜4⎟ + q⎜2⎟
⎝3 ⎠ ⎝2⎠ ⎝1⎠ ⎝3⎠ ⎝0⎠ ⎝0⎠
14. Ermittle die Lösung obiger Aufgabe mit Hilfe von
https://www.arndt-bruenner.de/mathe/geometrie/analygeo/index.htm (Vergleiche die Lösung aus dem Rechner mit deiner von Hand erzeugten Lösung!)
15. Gehe auf den Menüpunkt "Schnitt zweier Geraden" und erstelle mit dem "Test"-Button eine Aufgabe, wo sich zwei geraden Schneiden. Berechne den Schnittpunkt schließlich selbst per Hand!
15. Löse ein LGS mit
http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi?c=sys
31.08.2021
Übersicht Lösungen von LGS:
20210831_LGS.pdf
25.08.2021
Aufgabe aus dem Unterricht:
Gegeben: zwei Ebenen. Bestimme die Schnittgerade
→ ⎛10⎞ ⎛0⎞ ⎛0⎞ → ⎛2⎞ ⎛3⎞ ⎛5⎞
x= ⎜2 ⎟ + r⎜1⎟ + s⎜3⎟ x= ⎜4⎟ + p⎜4⎟ + q⎜2⎟
⎝3 ⎠ ⎝2⎠ ⎝1⎠ ⎝3⎠ ⎝0⎠ ⎝0⎠
LGS aufstellen:
r s p q
⎛0 0 -3 -5 -8⎞ Zeilen tauschen
⎜1 3 -4 -2 -2⎟ so dass führende Nullen
⎝2 1 0 0 0⎠ bereits unten stehen
⎛1 3 -4 -2 -2⎞ Zeile II - 2·I
⎜2 1 0 0 0⎟
⎝0 0 -3 -5 -8⎠
⎛1 3 -4 -2 -2⎞ Struktur: ⎛ ⍯ ⍰ ⍰ ⍰ ⍰ ⎞
⎜0 -5 8 4 4⎟ ⎜ . ⍯ ⍰ ⍰ ⍰ ⎟
⎝0 0 -3 -5 -8⎠ ⎝ . . ⍯ ⍰ ⍰ ⎠
Wähle q als Parameter:
III: -3p -5q = -8 ⇔ p = 8/3 - 5/3q
Lösungskombination für p und q:
q = 1, p = 1
q = 4, p = -12/3 = -4
Punkte auf E2: (10|10|3) und (10|-4|3)
Mögliche Schnittgeradengleichung:
→ ⎛10⎞ ⎛0 ⎞ → ⎛10⎞ ⎛0 ⎞
x = ⎜10⎟ + r ⎜-14⎟ x = ⎜⍰ ⎟ + r ⎜⍰ ⎟
⎝3 ⎠ ⎝0 ⎠ ⎝3 ⎠ ⎝0 ⎠
20.08.2021
Ein Online-Rechner für lineare Gleichungssysteme
http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi?c=sys
18.08.2021
Mindmaps als Übersicht der Oberstufenmathematik
AbiturAnalysis2017.png
AbiturLinAlgebra2017b.png
AbiturStochastik2017.png
30.06.2021
Vektorrechnung online Rechner:
https://www.arndt-bruenner.de/mathe/geometrie/analygeo/index.htm
Wolfram-Alpha Rechner
https://www.wolframalpha.com/input/?i=antiderivative of x^2*e^x
Blockout:
blockout.zip
30.06.2021
Eine kleine Informatik-Tour:
Erstelle ein OpenOffice Writer Dokument mit dem Namen 20180614_Name_iftour
Am Ende deiner Tour soll das Dokument in pdf konvertiert werden und auf unserem share-Ordner abgegeben werden.
A1) Mache eine Screenshot deines Browserfensters und erstelle eine Beschreibung von mindestens 5 Fensterelementen. Beispiel (allerdings ein anderes Fenster)
Fenster.png).
A2) Erstelle ein Diagramm (z.B. mit dem Programm Dia) mit den Beziehungen der Hauptpersonen deines Lieblingsfilms.
(Beispiel eines (thematisch anderen) Diagramms:
er_diagramm.png )
A3) Mache dich mit den Tastenkürzel: Ctrl-X, Ctrl-C und Ctrl-V vertraut!
Füge nach jedem "Thema" in deinem Dokument einen Seitenumbruch ein!
A4) Lade ein z.B. ein StarWars-Bild aus dem Netz herunter und ersetze die Köpfe durch Trump und Merkel und zeichne auch eine Sprechblase hinein. Benutze dazu z.B. ein Bildbearbeitungsprogramm (z.B. IrfanView oder Paint).
A5) Finde heraus, wieviel mal das Wort "Gott" in der deutschen Bibel vorkommt. (Beschreibe, wie du vorgehst!)
A6) Finde heraus, wie du eine Multiplikationstabelle für das große 1x1 in Excel/Calc (ohne einzeln einzutippen!) erstellst und füge sie in dein Dokument ein.
Also in der Art:
1 2 3 4 5 ... 20
1 1 2 3 4 5 ...
2 2 4 6 8 10 ...
3 3 6 9 12 15 ...
...
20 .. ... ... 400
A7) Meine Festplatte zuhause kann 2 Terabyte Daten fassen. Auf Millimeterpapier sind die kleinen Kästchen genau 1 Quadratmillimeter groß. Diese Kästchen kann man als einzelne Bits auffassen (die man schwarz oder weiß anmalen kann). Wie groß müsste eine quadratische Fläche aus Millimeterpapier sein, um 2 TB Daten zu speichern? (Rechenweg!)
A8) Erkläre den Anwendungsbereich und Sinn folgender Dateiformate: doc, pdf, jpg, gif, png, exe, zip, txt, csv, xls, ppt
A9) Wenn man unter Windows eine Datei mit dem rechten Mausbutton in einen neuen Ordner zieht, so öffnet sich ein Menü: "Hierher kopieren, hierher verschieben, Verknüpfung erstellen". Erkläre Unterschiede. Welche der Optionen wird gewählt, wenn man eine Datei nur mit dem linken Mauszeiger in einen neuen Ordner zieht?
18.05.2021
Podcast zur Aufgabe 16 auf Seite 165
www.plusplanet.de/video/20210517_mlk_s165_nr16_low.mp3
Hier noch drei Beispiele von Integralen des Typs v' durch v:
20210518_integrale_vstrich_durch_v.jpg
(Bei Aufgabe b) würde ich einen Tipp geben, aber Teil a) und c) müsstet ihr auch ohne Tipp lösen können)
Weitere Trainingsmöglichkeiten mit Lösungen gibt es auf Seite 168 und 169.
Hier nochmal die aktualisierten Klausurthemen (hinzugekommene Elemente sind markiert):
Klausurthemen für die Klausur am 19.05.2021
"Funktionsuntersuchung zusammengesetzter Funktionen"
• Alle Ableitungsregeln insb. Produktregel und Kettenregel beherrschen
• Mit Funktionen der Art p(x) · e
q(x) umgehen können (wobei p und q ganzrationale Funktionen sind)
• Alle Aspekte der Funktionsuntersuchung beherrschen (vgl. z.B. Aufgabe 1.4.1.18 aus meinem Lösungsarchiv), also auch Fernverhalten, Standardsymmetrie, Krümmung.
• Aus Sachzusammenhängen heraus das richtige Untersuchungswerkzeug wählen (das muss man trainieren)
• Integration von Produkten ("partielle Integration")
• Integration von Funktionen des Typs v'/v
• Integration von Funktionen des Typs v' · u'(v) (also "Kettenregel rückwärts")
• Logarithmusregeln
Übungstipps
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_2_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_2_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_2_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_3_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_3_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_3_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_4_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_4_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_4_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_5
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_6
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_7
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_8
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_9
Beachte auch die (absichtlich falsch einsortierte) Aufgabe ganz am Ende des Lösungsarchivs:
http://www.plusplanet.de/loesungsarchiv/index.html#anker3_3_1_5
Buch:
S 162, S 163 komplett
S 164 Nr13, N16
12.05.2021
Übungen zur Integration mit unterschiedlichen Regeln:
Übungsblatt mit Lösungen:
20210511_integration_aufgaben.jpg
Podcast dazu:
www.plusplanet.de/video/20210511_podcast_lk_integrale_low.mp3
Übungen zu Logarithmusregeln
Übungsblatt mit Lösungen:
20210511_logarithmus_uebung.jpg
Podcast dazu:
www.plusplanet.de/video/20210511_podcast_lk_log_regeln_low.mp3
Übungsblatt Teil2 mit Lösungen:
20210511_logarithmus_uebung_teil2.jpg
04.05.2021
Fahrplan für die Stunde am 04.05.2021:
• Corona-Test
• (Selbstständig) Übungen zur Produktintegration: Buch S 160 Nr 1 und 2 mit folgender Zusatzaufgabe: Gib jeweils auch eine Stammfunktion des Integranden an und mache die Probe durch Ableiten!
• (Selbstständig) S150 Nr 7 (bitte Lösungen an die Tafel werfen)
• (Selbstständig) Untersuchung von f(x) = x² · e
-x
Klausurthemen für die Klausur am 12.05.2021 Klausur wurde verschoben!
"Funktionsuntersuchung zusammengesetzter Funktionen"
• Alle Ableitungsregeln insb. Produktregel und Kettenregel beherrschen
• Mit Funktionen der Art p(x) · e
q(x) umgehen können (wobei p und q ganzrationale Funktionen sind)
• Alle Aspekte der Funktionsuntersuchung beherrschen (vgl. z.B. Aufgabe 1.4.1.18 aus meinem Lösungsarchiv), also auch Fernverhalten, Standardsymmetrie, Krümmung.
• Aus Sachzusammenhängen heraus das richtige Untersuchungswerkzeug wählen (das muss man trainieren)
• Integration von Produkten ("partielle Integration")
Übungstipps
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_2_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_2_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_2_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_3_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_3_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_3_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_4_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_4_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_4_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_5
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_6
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_7
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_8
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_9
Buch:
S 162, S 163 komplett
S 164 Nr13, N16
04.05.2021
Untersuchung von Funktionen:
Schaue Dir die Lösungen folgender Aufgaben an:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_17
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_18
Erledige die Aufgabenstellung für folgende Funktion:
f(x) = x² · e
-x
Übrigens: Die obige Aufgabenstellung ist selbstverständlich klausurrelevant.
Gemeinsam: Lesen von S. 147 f
Aufgabe: S150 Nr 7
Zusätzliches Klausurthema: Produktintegration
28.04.2021
Fernverhalten:
Hier meine Aufzeichnungen (sorry für die Qualität):
http://www.plusplanet.de/miscrawhtml/20210428_fernverhalten.jpg
Und dazu der passende Podcast:
http://www.plusplanet.de/miscrawhtml/20210428_fernverhalten_low.mp3
14.04.2021
Aufgaben aus der Abiturvorbereitung:
Bitte benutzt - falls nötig - die Produktregel.
Es gilt:
(u·v)' = u'·v + u·v'
(Direktlink:
http://www.plusplanet.de/miscrawhtml/20210413_abivorbereitung_ana2_auf.jpg )
13.04.2021
Aufgaben aus der Abiturvorbereitung:
Nicht alle Aufgaben sind für Euch momentan lösbar. Dies solltet ihr aber erkennen!
(Direktlink:
http://www.plusplanet.de/miscrawhtml/20210412_abivorbereitung_ana.jpg )
18.03.2021
Nachtrag zum Logarithmus:
Die folgenden (dahingeschmierten) Überlegungen entstanden, weil ich auf eine Merkwürdigkeit gestoßen bin: Ich dachte erst, ich hätte mich verrechnet. Doch mit ein paar Überlegungen erwies sich wieder alles als korrekt.
Aufgabe:
• Lies die folgenden Gedanken durch und versuche, die Lücken auszufüllen.
• Versuche die Idee hinter dieser Niederschrift zu verstehen: Stelle bei jedem Abschnitt die Frage nach dem "warum?". Versuche es soweit zu verstehen, dass Du die Gedankengänge nacherzählen könntest.
20210317_logarithmus_rechenregeln_luecke.jpg
16.03.2021
Klausurtraining:
www.plusplanet.de/miscrawhtml/20210316_mlk_klausuruebung.jpg
01.03.2021
Lieber Mathekurs
Hier zwei ein Podcasts:
• Erstens bezüglich Aufgaben 2,3 und 7 auf S113 bzw. S114:
www.plusplanet.de/video/20210301_mlk_s113_nr2_3_7_low.mp3
• Ein Podcast über "beschränktes Wachstum" (S115 im Buch):
www.plusplanet.de/video/20210301_mlk_buch_s115_116_low.mp3
• Aufgaben zum Kapitel "beschränktes Wachstum" (S116 Nr 1 2 6 im Buch):
http://www.plusplanet.de/video/20210302_mlk_s116_nr1_2_6_low.mp3
16.09.2020
Klausurthemen: Verbindliche Informationen
Alle Informationen findet ihr in unserem Kurs auf
www.gbg-duesseldorf.de nach dem Login.
Allgemeine Informationen zu Operatoren:
Operatoren_eine_seite.pdf
20190202_operatoren_beispiel.pdf (Hier interessiert nur der erste Teil. Integrale kennen wir ja noch nicht)
08.09.2020
Klausurthemen: Vorabinformationen
Funktionen: Verschiebungen in x- und y-Richtung. Streckungen und Stauchungen in x- und y-Richtung. Wie verändert sich der Funktionsterm dabei? (Wir haben dies an der Gaußklammer-Funktion durchgearbeitet. Diese muss in der Klausur nicht unbedingt vorkommen. Das Prinzip funktioniert aber mit allen Funktionen. Bekannt sind diese Ideen z.B. bei der Scheitelpunktform von quadratischen Funktionen)
Abschnittsweise definierte Funktionen
Begriffe Differenzierbarkeit und Stetigkeit. Insbesondere bei den "Übergangsstellen" der abschnittsweise definierten Funktionen kann nicht-Differenzierbarkeit oder nicht-Stetigkeit auftreten. Nachweis von Stetigkeit über den Vergleich zweier Funktionswerte und Nachweis von Differenzierbarkeit über den Vergleich zweier Funktionswerte der Ableitung(en).
Ableitungen: Zu gegebener Funktion die Ableitung skizzieren können. Bei gegebener Ableitungsfunktion Eigenschaften der Ursprungsfunktion ablesen.
Nullstellen, Extremstellen und Wendestellen berechnen können.
Extremwertprobleme:
Zu gegebenem Sachzusammenhang eine Zielfunktion aufstellen und diese auf die gewünschte Eigenschaft untersuchen. Dabei Randwertbetrachtung bei Funktionen mit beschränktem Definitionsbereich nicht vergessen.
Übungs-App zum Zeichnen von Ableitungen (braucht etwas Zeit, bis es geladen ist. Ich bezweifle, dass es auf dem Handy anständig funktioniert - aber auf einem Rechner macht es Spaß! Man kann nämlich berechnen lassen, wie genau man war.)
http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_try_to_graph.html
27.08.2020
Themenübersicht des LKs
AbiturAnalysis2017.png
AbiturLinAlgebra2017b.png
AbiturStochastik2017.png
Übungen:
Lösung als "Lückentext":
20220125_tang_an_zwei_parabeln_luecke.jpg
Lösung komplett:
20220125_tang_an_zwei_parabeln.jpg
21.02.2022
Für die Stunde am Montag: Logarithmus
20220219_log_regeln_luecke.jpg
20220219_log_regeln.jpg
22.03.2022
Begriffe der Stochastik
Absolute Häufigkeit
Absolute/relative Häufigkeit
Alternativhypothese
Annahmebereich
Baumdiagramm
Bedingte Wahrscheinlichkeit
Bernoulli Experiment
Bernoullikette
Binomialkoeffizient
Binomialverteilung
Binominialverteilung
Einseitiger/ zweiseitiger Test
Einseitiger/zweiseitiger Signifikanztest
Ereignis und Ergebnis
Ereignis/ Gegenereignis
Ergebnismenge/Ergebnis
Erwartungswert
Erwartungswert und Standardabweichung bei Binomialverteilung
Fakultät
Fehler 1. und 2. Art
Gegenereignis
Glockenkurve
Histogramm
Hypothesentest (beidseitig/ einseitig)
Kombinatorik
Laplace Regel
Laplace-Experiment
Laplace-Versuch
Mengen
Mengenschreibweise
Mittelwert
Mittelwert und empirische Standardabweichung bei Zufallsexperimenten
Mittelwert/Median
Normalverteilung
Nullhypothese
Permutation und hypergeometrische Verteilung
Pfadregeln
Relative/ absolute Häufigkeit
Sigma
Sigmaregeln
Signifikanzniveau
Standardabweichung
Stetigkeitskorrektur
Stochastische Matrix
Tupel
Unterschied zwischen experimentell ermittelten Häufigkeiten und Wahrscheinlichkeiten
Varianz
Vierfeldertafel
Wahrscheinlichkeit
Zufallsgröße X
Übergangsmatrizen